**#** | **Project Leader** | **Project Name** |

1 | Klaus Altmann (FU Berlin) | Exploiting torus actions in algebraic geometry |

2 | Mohamed Barakat (TU Kaiserslautern) | Constructive derived equivalences and equivariant vector bundles |

3 | Laurent Bartholdi (Göttingen) | Algorithmic aspects of branch groups |

4 | Gebhard Böckle (Heidelberg) | Computational aspects of modular forms and p-adic Galois representations |

5 | Irene Bouw (Ulm) | L-functions and other arithmetic invariants of curves of genus greater than or equal to 3 |

6 | Winfried Bruns (Osnabrück) | Algorithms for rational cones and toric geometry |

7 | Johannes Buchmann (TU Darmstadt) | Improving and Combining Gröbner bases and SAT solving techniques for algebraic cryptanalysis |

8 | Michael Cuntz (TU Kaiserslautern) | Combinatorial and geometric structures for reflection groups and groupoids |

| | Arrangements of complex reflection groups: Geometry and combinatorics |

9 | Ishai Dan-Cohen (Duisburg-Essen) | Explicit Chabauty-Kim theory for the thrice punctured line |

10 | Wolfram Decker (TU Kaiserslautern) | Fundamental Algorithms in Singular |

| | Coordinator Project |

11 | Ulrich Derenthal (LMU Müchen) | Symmetries of singular del Pezzo surfaces in algebraic and arithmetic geometry |

12 | Michael Dettweiler (Bayreuth) | Geometric Aspects of Differential Equations |

13 | Bettina Eick (TU Braunschweig) | Classification of nilpotent associative algebras and coclass theory |

14 | Gavril Farkas (HU Berlin) | Syzygies, Hurwitz spaces and Ulrich sheaves |

15 | Claus Fieker (TU Kaiserslautern) | Class group computation in large fields |

16 | Anne Frühbis-Krüger (Hannover) | Algorithmic methods for arithmetic surfaces and regular, minimal models |

17 | Andreas Gathmann (Kaiserslautern) | Algorithmic tropical intersection theory on moduli spaces |

18 | Meinolf Geck (Stuttgart) | Computing with Coxeter groups and Hecke algebras (CHEVIE/PyCox) |

19 | Ulrich Görtz (Duisburg-Essen) | Semistable resolutions of local models |

20 | Gert-Martin Greuel (TU Kaiserslautern) | Improving and Combining Gröbner bases and SAT solving techniques for algebraic cryptanalysis |

21 | Jürgen Hausen (Tübingen) | Symmetries of singular del Pezzo surfaces in algebraic and arithmetic geometry |

22 | Florian Heß (Oldenburg) | Algorithmic methods for arithmetic surfaces and regular, minimal models |

| | Complex Multiplication: Class invariants and cryptographic applications |

23 | Michael Joswig (TU Berlin) | Polyhedral Fan Structures in Toric and Tropical Geometry |

24 | Steffen König (Stuttgart) | Experiments with cellular structures |

25 | Wolfgang Kimmerle (Stuttgart) | Units in integral group rings |

26 | Simon King (Jena) | Standard basis methods for path algebra quotients |

27 | Jürgen Klüners (Paderborn) | Computational Galois Theory for Local Fields |

28 | Hannah Markwig (Saarbrücken) | Algorithmic tropical intersection theory on moduli spaces |

29 | Jürgen Müller (Jena) | Computational aspects of block theory of finite groups |

30 | Gabi Nebe (RWTH Aachen) | Arithmetic methods for finitely generated matrix groups |

31 | Gerhard Pfister (TU Kaiserslautern) | Fundamental Algorithms in Singular |

32 | Gerhard Röhrle (Bochum) | Arrangements of complex reflection groups: Geometry and combinatorics |

33 | Frank-Olaf Schreyer (Saarbrücken) | Syzygies, experiments in algebraic geometry and unirationality questions for moduli spaces |

34 | Mathias Schulze (TU Kaiserslautern) | Fundamental Algorithms in Singular |

35 | Armin Shalile (Stuttgart) | Algorithmic methods in the modular representation theory of diagram algebras |

36 | Andreas Stein (Oldenburg) | Computational methods for abelian varieties over number fields with complex multiplication |

37 | Michael Stoll (Bayreuth) | The Generalized Fermat Equation with exponents 2, 3, n |

38 | Christian Stump (Hannover) | Combinatorial and geometric structures for reflection groups and groupoids |

39 | Thorsten Theobald (Frankfurt a.M.) | Effective methods for spectrahedra in real and convex algebraic geometry |

40 | Duco van Straten (Mainz) | Monodromy Algorithms in Singular |

41 | Christopher Voll (Bielefeld) | Toroidal methods for computing zeta functions of groups and rings |

42 | Annegret Weng (HS f. Technik, Stuttgart) | Computational methods for abelian varieties over number fields with complex multiplication |

43 | Stefan Wewers (Hannover) | L-functions and other arithmetic invariants of curves of genus greater than or equal to 3 |

44 | Gabor Wiese (Luxembourg) | Computational aspects of modular forms and p-adic Galois representations |